OLED Encapsulation

Mark Taylor Emerging Innovations Group

January 28, 2014 DoE Solid State Lighting R&D Workshop Tampa, Florida

taylormp@corning.com

Introduction

- Objectives of today's remarks
- Encapsulation choices
- Edge sealing choices
- Application of frit sealing to OLED lighting
- Encapsulation research needs

Encapsulation targets

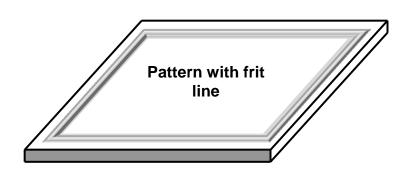
- Performance
 - Permeability* $< 1x10^{-6} g_{water}/m^2/day$
 - < 1x10⁻⁵ g_{oxygen}/m²/day
- Cost
 - \$10-20/m^{2*}
- Reliability >40,000 hours active / 20 years lifetime
 - Damp heat degradation
 - Mechanical stress
 - Thermal stress

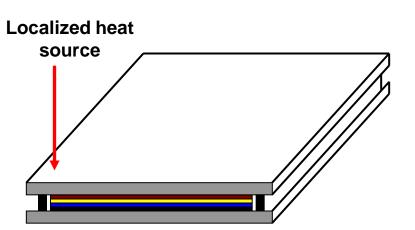
^{*}DoE Manufacturing Roadmap - 2013

Encapsulation material choices

Material	Pro's	Con's
Metal can	Low costEasy to pocket for desiccant	Poor CTE matchStamping costsEdge seal required
"Thick" Glass (>0.2 mm)	 Excellent moisture, oxygen and thermal resistance Low cost Transparent Expansion match to substrate 	 Rigid Pocket required for desiccant if frit seal is not used Edge seal required
Polymer film	Flexible	High costDamage sensitivityEdge seal required
Deposited coatings	No edge seal	 High cost Additional (complex) deposition step Damage sensitivity May require backup glass
"Thin" glass (<0.2 mm)	Flexible/conformableAll other glass advantages	 Fragile and may require polymer backup Flexible edge seal required with flexible substrate

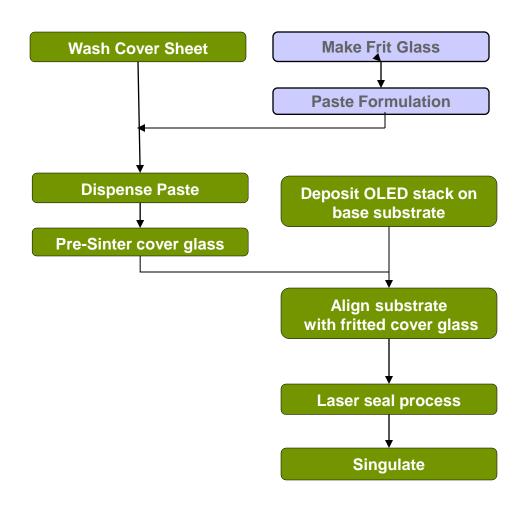
Edge sealing technology options


Technology	Pro's	Con's
Laser glass frit seal	 Established OLED sealing technology Hermetic seal Capable of sealing over electrical leads Narrow seal band 	 Multiple process steps Expensive Stress buildup with larger sizes Anticlastic bending stress
Polymer seal	Low temperatureInexpensive process stepsSupports flexibility	 May degrade under aggressive environmental conditions Not hermetic Wide seal band Requires desiccant Best performing materials are expensive


Corning developed a hermetic sealing solution using a low Tg glass frit

Deposit required width and thickness frit line on cover glass

Frit uniquely designed to absorb required energy


Align cover glass with backplane / OLED stack and seal with localized heat source

- ✓ Developed a low Tg frit with unique absorption characteristics tuned to a specifics wavelength region (IR)
- ✓ Designed frit with a selective filler material to adjust the CTE
- ✓ These unique features offered sealing compatible with OLEDs.

OLED laser frit sealing process flow

Seal performance was demonstrated with different lead configurations and with live OLEDs

- Sealing tests performed successfully over various lead materials/passivation layers
 - Mo, W, Ti, Cr, ITO, multi-layer metals
 - SiN_x, SiO₂ passivation materials
- Sealing performance sealed over lead material,
 - Ca test at 85C/85% RH passes 8,500 hrs with glass package
 - Successfully demonstrated over active and passive backplanes
- Successfully sealed many hundreds of live OLED samples without damage to leads or to the OLEDs
 - Sealing confirmed hermetic
 - No electrical issues with display performance
- AM OLED displays exceeded 2000 hours under 85C/85% RH testing

Technology wishlist

- Stress modeling of hermetically sealed glass laminate
- Reduced cost of sealing polymers
- Greater flexibility of polymers after curing
- Lower permeability to reduce desiccant load
- Solid state polymer encapsulant with inorganic layers and glass or polymer barrier

CORNING